Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(6): 4525-4540, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38294854

RESUMO

Ten-eleven translocation enzymes (TETs) are Fe(II)/2-oxoglutarate (2OG) oxygenases that catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in eukaryotic DNA. Despite their roles in epigenetic regulation, there is a lack of reported TET inhibitors. The extent to which 2OG oxygenase inhibitors, including clinically used inhibitors and oncometabolites, modulate DNA modifications via TETs has been unclear. Here, we report studies on human TET1-3 inhibition by a set of 2OG oxygenase-focused inhibitors, employing both enzyme-based and cellular assays. Most inhibitors manifested similar potencies for TET1-3 and caused increases in cellular 5hmC levels. (R)-2-Hydroxyglutarate, an oncometabolite elevated in isocitrate dehydrogenase mutant cancer cells, showed different degrees of inhibition, with TET1 being less potently inhibited than TET3 and TET2, potentially reflecting the proposed role of TET2 mutations in tumorigenesis. The results highlight the tractability of TETs as drug targets and provide starting points for selective inhibitor design.


Assuntos
Dioxigenases , Glutaratos , Oxigenases , Humanos , Epigênese Genética , Oxigenases de Função Mista , Dioxigenases/metabolismo , DNA , Metilação de DNA , Proteínas Proto-Oncogênicas/metabolismo
2.
Bioorg Med Chem ; 99: 117597, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262305

RESUMO

Ten-Eleven Translocation (TET) enzymes are Fe(II)/2OG-dependent oxygenases that play important roles in epigenetic regulation, but selective inhibition of the TETs is an unmet challenge. We describe the profiling of previously identified TET1-binding macrocyclic peptides. TiP1 is established as a potent TET1 inhibitor (IC50 = 0.26 µM) with excellent selectivity over other TETs and 2OG oxygenases. TiP1 alanine scanning reveals the critical roles of Trp10 and Glu11 residues for inhibition of TET isoenzymes. The results highlight the utility of the RaPID method to identify potent enzyme inhibitors with selectivity over closely related paralogues. The structure-activity relationship data generated herein may find utility in the development of chemical probes for the TETs.


Assuntos
Dioxigenases , Peptídeos Cíclicos , Humanos , Epigênese Genética , Proteínas de Ligação a DNA/metabolismo , Oxigenases de Função Mista/metabolismo , Dioxigenases/metabolismo , Metilação de DNA , Proteínas Proto-Oncogênicas
3.
Cancers (Basel) ; 14(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497494

RESUMO

Defects in epigenetic pathways are key drivers of oncogenic cell proliferation. We developed a LSD1/HDAC6 multitargeting inhibitor (iDual), a hydroxamic acid analogue of the clinical candidate LSD1 inhibitor GSK2879552. iDual inhibits both targets with IC50 values of 540, 110, and 290 nM, respectively, against LSD1, HDAC6, and HDAC8. We compared its activity to structurally similar control probes that act by HDAC or LSD1 inhibition alone, as well as an inactive null compound. iDual inhibited the growth of leukemia cell lines at a higher level than GSK2879552 with micromolar IC50 values. Dual engagement with LSD1 and HDAC6 was supported by dose dependent increases in substrate levels, biomarkers, and cellular thermal shift assay. Both histone methylation and acetylation of tubulin were increased, while acetylated histone levels were only mildly affected, indicating selectivity for HDAC6. Downstream gene expression (CD11b, CD86, p21) was also elevated in response to iDual treatment. Remarkably, iDual synergized with doxorubicin, triggering significant levels of apoptosis with a sublethal concentration of the drug. While mechanistic studies did not reveal changes in DNA repair or drug efflux pathways, the expression of AGPAT9, ALOX5, BTG1, HIPK2, IFI44L, and LRP1, previously implicated in doxorubicin sensitivity, was significantly elevated.

4.
Nucleic Acids Res ; 49(16): 9042-9052, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403467

RESUMO

Rolling circle amplification (RCA) is a powerful tool for the construction of DNA nanomaterials such as hydrogels, high-performance scaffolds and DNA nanoflowers (DNFs), hybrid materials formed of DNA and magnesium pyrophosphate. Such DNA nanomaterials have great potential in therapeutics, imaging, protein immobilisation, and drug delivery, yet limited chemistry is available to expand their functionality. Here, we present orthogonal strategies to produce densely modified RCA products and DNFs. We provide methods to selectively modify the DNA component and/or the protein cargo of these materials, thereby greatly expanding the range of chemical functionalities available to these systems. We have used our methodology to construct DNFs bearing multiple surface aptamers and peptides capable of binding to cancer cells that overexpress the HER2 oncobiomarker, demonstrating their potential for diagnostic and therapeutic applications.


Assuntos
DNA/química , Nanoestruturas/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Aptâmeros de Peptídeos/química , Linhagem Celular Tumoral , Reação de Cicloadição/métodos , Humanos
5.
Chem Commun (Camb) ; 54(57): 7975-7978, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-29961803

RESUMO

Jumonji domain-containing demethylases (JmjC-KDMs) catalyse demethylation of Nε-methylated lysines on histones and play important roles in gene regulation. We report selectivity studies on KDM6B (JMJD3), a disease-relevant JmjC-KDM, using synthetic lysine analogues. The results unexpectedly reveal that KDM6B accepts multiple Nε-alkylated lysine analogues, forming alcohol, aldehyde and carboxylic acid products.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Sequência de Aminoácidos , Biocatálise , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Lisina/metabolismo , Oxirredução , Peptídeos/síntese química , Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Chembiochem ; 19(9): 979-985, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29665240

RESUMO

The ten-eleven translocation (TET) protein family, consisting of three isoforms (TET1/2/3), have been found in mammalian cells and have a crucial role in 5-methylcytosine demethylation in genomic DNA through the catalysis of oxidation reactions assisted by 2-oxoglutarate (2OG). DNA methylation/demethylation contributes to the regulation of gene expression at the transcriptional level, and recent studies have revealed that TET1 is highly elevated in malignant cells of various diseases and related to malignant alteration. TET1 inhibitors based on a scaffold of thioether macrocyclic peptides, which have been discovered by the random nonstandard peptide integrated discovery (RaPID) system, are reported. The affinity-based selection was performed against the TET1 compact catalytic domain (TET1CCD) to yield thioether macrocyclic peptides. These peptides exhibited inhibitory activity of the TET1 catalytic domain (TET1CD), with an IC50 value as low as 1.1 µm. One of the peptides, TiP1, was also able to inhibit TET1CD over TET2CD with tenfold selectivity, although it was likely to target the 2OG binding site; this provides a good starting point to develop more selective inhibitors.


Assuntos
Metilação de DNA/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sulfetos/farmacologia , Sequência de Aminoácidos , Domínio Catalítico/efeitos dos fármacos , Descoberta de Drogas , Humanos , Compostos Macrocíclicos/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Peptídeos Cíclicos/química , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA